Best Poster Awards – Seeing is Believing

For the 5th time, the EMBL Advanced Training Centre played host to 466 researchers and imaging specialists at the EMBO|EMBL Symposium: Seeing is Believing – Imaging the Molecular Processes of Life (9 – 12 October 2019), where cutting-edge applications illustrated how imaging can answer biological questions and capture the dynamics of life. 

Out of the 248 posters presented, 2 stood out from the rest and were awarded a poster prize based on popular vote. Here we present the abstracts and posters of the winners.

CalQTrace: Simultaneous Calculation and Quantification of 100,000 immune activation Traces at single-cell resolution using CNN

Liliana Barbieri is a doctoral student at the Biomedical Imaging Doctoral Training Centre, University of Oxford, UK. PHOTO: Liliana Barbieri

Authors: Liliana Barbieri (1), Kseniya Korobchevskaya (2), Azeem Ahmad (3), Huw Colin-York (1), Aurelien Barbotin (4), Glykeria Karanika (1), Loic Peters (5), Isabela Pedroza-Pacheco (4), Angela Lee (1), Lena Cords (1), Anish Priyadarshi (3), Dominic Waithe (6), Jana Kohler (6), Christoffer Lagerholm (6), Balpreet Singh Ahluwalia (3), Marco Fritzsche (2)

Quantification of immune cell activation is essential to the understanding of their effector function. Tracing activation signatures like cellular calcium release and the expression of surface markers in response to activation signals allows the classification of the course of immune cell activation from early triggering events to late differentiation. However, robust quantitative platforms for such measurements represent a major challenge, restricting the analysis to small single-cell population or more recently to cell ensembles with high-dimensional parameter analysis tools. Here, we introduce a combination of a convolutional neural network-based CalQTrace (Calculation and Quantification of Trace) software, together with a Graphical User Interface, and an optical high-throughput light-sheet platform, allowing the simultaneous fully automated quantitation of immune cell activation traces of >100,000 live immune cells. CalQTrace enables user-independent statistically robust classification and quantification of multiple fluorescent activation markers including calcium, CD25+/- expression, and cell viability tracking single cells in space and time within a 5 mm x 5 mm large-field-of-view, opening-up unprecedented insights into physiological activation tracing in living immune cells.

(1) MRC Human Immunology Unit, University of Oxford, United Kingdom
(2) Kennedy Institute for Rheumatology, University of Oxford, United Kingdom
(3) The Arctic University of Norway, Norway
(4) University of Oxford, United Kingdom
(5) University College London, United Kingdom
(6) Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom

Poster currently not available

Bleaching-insensitive STED microscopy with exchangeable fluorescent probes

Mike Heilemann is a Principal Investigator at Johann Wolfgang Goethe-University, Frankfurt, Germany. PHOTO: Mike Heilemann

Authors: Christoph Spahn (1), Florian Hurter (1), Mathilda Glaesmann (1), Jonathan Grimm (2), Luke Lavis (2), Hans-Dieter Barth (1), Marko Lampe (3), Mike Heilemann (1)

Photobleaching affects image quality and resolution in fluorescence microscopy, and thus limits the extractable information. This is in particular relevant for super-resolution microscopy where typically high laser intensities are used. In order to minimize photobleaching, we repurposed the use of exchangeable fluorescent probes, as used in single-molecule localisation microscopy methods such as Point Accumulation for Imaging in Nanoscale Tomography (PAINT) [1], for STED microscopy. We demonstrate pseudo-permanent labeling of target structures and constant exchange of photobleached fluorophores. This concept allows for whole-cell, 3D, multi-color and live-cell STED microscopy [2]. Using transiently binding hydrophobic dyes and fluorophore-labeled major minor groove binders [3, 4], we visualised the nanostructure of chromatin, cell membranes and organelles in bacterial and mammalian cells in 3D. To expand the range of targets, we employed oligonucleotide-labeled antibodies that transiently bind fluorophore-labeled oligonucleotides, as used in single-molecule super-resolution imaging with DNA-PAINT [5], and demonstrate multi-color STED imaging.

[1] Sharanov and Hochstrasser, PNAS 103 (50), 18911-18916 (2006)
[2] Spahn et al., Nano Letters 19 (1), 500-505 (2019)
[3] Lukinavičius et al., Nature Communications 6, 8497 (2015)
[4] Spahn et al., Scientific Reports 8, 14768 (2018)
[5] Schnitzbauer et al., Nature Protocols 12(6), 1198-1228 (2017)

View PDF poster

(1) Johann Wolfgang Goethe-University Frankfurt, Germany
(2) HHMI – Janelia Research Campus, United States of America
(3) EMBL Heidelberg, Germany

Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by .


Follow us:

Creating is Understanding: Synthetic Biology Masters Complexity – Best Poster Awards

The recent EMBO Workshop: Creating is Understanding: Synthetic Biology Masters Complexity (22 – 25 Sep) covered various themes that are geared toward basic research while being at the forefront of synthetic biology.

110 researchers came together at the EMBL Advanced Training Centre in Heidelberg, Germany for 3,5 days of talks, posters and networking. Here we present the work of 4 scientists who received best poster awards at the conference by popular vote.

Engineering portability of the CcaSR light switch for the control of biofilm formation in Pseudomonas putida

Angeles Hueso-Gil is a PhD researcher at the Spanish National Centre for Biotechnology in Madrid.

Authors: Angeles Hueso-Gil (1), Ákos Nyerges (2), Csaba Pál (2), Belén Calles (1), Victor de Lorenzo (1)

Two of the technical challenges faced by contemporary microbiology involve controlling gene expression using light and regulating bacterial biofilm formation, determined by the intracellular levels of the secondary messenger c-di-GMP. CcaSR system is one of the light switches repeatedly used for transcription induction in Escherichia coli. This two-component system represented a good candidate for its adaptation to Pseudomonas putida. Previous attempts have tried to use this microorganism as chassis for the implementation of new pathways, being biofilm formation an important function to control. To this end, we unified CcaSR components in one single construct and randomly mutagenized their regulatory regions to find a clone with a balanced expression of the system key parts inside P. putida. The combination of this novel mutagenization process with a proper screening, which included a first sorting of the libraries and the later isolation of colonies, lead us to a clone with a much improved induction by green light. The selected variant had a notable capacity in response to green light. Finally, optimized CcaSR was used to control the expression of super-efficient variant of PleD, a diguanylate cyclase of Caulobacter which allowed a tight control of c-di-GMP levels, and therefore, of biofilm production.

View PDF poster

(1) National Centre for Biotechnology, Spain
(2) Biological Research Centre of the Hungarian Academy of Sciences, Hungary

Designer membraneless organelles enable orthogonal translation in eukaryotes

Christopher Reinkemeier is a PhD student at EMBL Heidelberg, JGU Mainz and IMB Mainz, Germany

Christopher Reinkemeier (1,2,3), Gemma Estrada Girona (3), Edward A. Lemke (1,2,3)

Genetic code expansion is a powerful tool to study and control protein function with single-residue precision. It is widely used to e.g. perform labeling for microscopy or to photocontrol proteins. This is achieved by introducing an orthogonal tRNA/synthetase suppressor pair into the host, to recode a stop codon to incorporate a noncanonical amino acid (ncAA) into the nascent chain. This technique is codon-specific, but it cannot select specific mRNAs, so naturally occurring stop codons could be suppressed leading to potential interference with housekeeping translation. Nature avoids cross-talk between cellular processes by confining specific functions into organelles. We aimed to design an organelle dedicated to protein engineering, but as translation is a complex process requiring hundreds of factors to work together, membrane-encapsulation would not be feasible. Inspired by the concept of phase separation we hypothesized that such an organelle could instead be designed membraneless. Phase separation can generate high local concentrations of proteins and RNAs in cells and has recently gained attention owing to its role in the formation of specialized organelles such as nucleoli or stress granules. Despite being membraneless and constantly exchanging with the cytoplasm/nucleoplasm, these organelles still perform complex tasks, such as transcription. We combined phase separating proteins with microtubule motor proteins to generated orthogonally translating organelles in living cells that contain an RNA-targeting system, the stop codon suppression machinery and ribosomes. These large organelles enable site- and mRNA-specific ncAA incorporation, decoding one specific codon exclusively in the mRNA of choice. Our results demonstrate a simple yet effective approach to the generation of semi-synthetic eukaryotic cells containing artificial organelles to harbor two
distinct genetic codes, providing a route towards customized orthogonal translation and protein engineering.

View PDF poster

(1) Johannes Gutenberg University Mainz, Germany
(2) Institute of Molecular Biology, Germany
(3) EMBL Heidelberg, Germany

Metabolic perceptrons for neural computing in biological systems

Paul Soudier is a PhD Student at the French National Institute of Agricultural Research, France

Amir Pandi (1), Mathilde Koch (1), Peter Voyvodic (2), Paul Soudier (1), Jerome Bonnet (2), Manish Kushwaha (1), Jean-Loup Faulon(1)

Synthetic biological circuits are promising tools for developing sophisticated systems for medical, industrial, and environmental applications. So far, circuit implementations commonly rely on gene expression regulation for information processing using digital logic. Here, we present a new approach for biological computation through metabolic circuits designed by computer-aided tools, implemented in both whole-cell and cell-free systems. We first combine metabolic transducers to build an analog adder, a device that sums up the concentrations of multiple input metabolites. Next, we build a weighted adder where the contributions of the different metabolites to the sum can be adjusted. Using a computational model fitted on experimental data, we finally implement two four-input of metabolite combinations by applying model-predicted weights to the metabolic perceptron. The perceptron-mediated neural computing introduced here lays the groundwork for more advanced metabolic circuits for rapid and scalable multiplex sensing.

View PDF poster

(1) French National Institute of Agricultural Research, France
(2) INSERM, France

Programmed uptake of biomacromolecules into protocells

Wiggert Altenburg is a PhD student at the Eindhoven University of Technology, The Netherlands

Wiggert Altenburg, Amy Yewdall, Daan Vervoort, Alex Mason, Jan van Hest

The bottom up recreation of cellular processes into synthetic compartments has, in recent years, emerged as an exciting line of research with which to study biological processes in a controlled environment. However, the interior of a living cell is a difficult milieu to mimic in bottom-up synthetic cells, as it is an environment crowded with high concentrations of many different biomacromolecules. In this work, we describe the development of a powerful new tool to more accurately emulate the cell cytosol in discrete coacervate-based protocells. The coacervate core utilized herein not only provides an inherently crowded and highly charged microenvironment, but has also been chemically modified to interact specifically with recombinantly expressed proteins. Our method leverages the well-established binding of His-tagged proteins to Ni2+-nitrilotriacetic acid, which ensures that macromolecules are taken up in a highly efficient, yet gentle manner, thus preserving biological activity. The straightforward method allowed for both control over the amount taken up and an increased local concentration. Moreover, the engineered uptake of proteins was then employed to study two key aspects: the effect of the Ni-NTA interaction on the diffusivity of incorporated proteins, and the enhancement in activity of an encapsulated two-enzyme cascade. This direct and targeted method of protein uptake into a discrete, membrane bound platform is a significant step forward for synthetic cells, and will enable the engineering of highly complex enzyme and signaling networks with increasingly life-like properties.

Poster currently not available

Eindhoven University of Technology, The Netherlands

Follow us:

How does the environment play a role in biodiversity?

Biodiversity – in all its forms and interactions – is the variety of life on Earth. Climate change is exacerbating biodiversity loss, and vice versa. Ahead of the EMBO | EMBL Symposium ‘The Organism and its Environment’ (1–4 March 2020), we talk to Scientific Organiser and EMBL Director General Edith Heard about the impact the environment has on biodiversity and the role of research in solving global challenges.

Does the environment play a large role in the creation of biological diversity?

Biodiversity is the variety of life on Earth. This life, in all its shapes and sizes, occurs in the context of ecosystems: it relies on and interacts with other organisms and the physical environment. Biodiversity represents the collective ‘knowledge learned’ by evolving species over millions of years, about how to survive the vastly varying environmental conditions Earth has and is experiencing. These varying environmental conditions cause natural variations in biodiversity, as well as genetic and epigenetic changes, within and between species over time. Today, scientists are trying to understand the basis of these natural variations, as they will allow us to understand how life evolves.

Fish populations have declined at an alarming rate, and half the world’s shallow water coral reefs have been lost in just 30 years.

But biodiversity is also a measure of the health of any ecosystem. Recent trends in biodiversity loss show very clearly that humans are destroying ecosystems on a massive scale. According to the Director General of the World Wildlife Fund (WWF), increased pollution, deforestation, climate change and other manmade factors have created a “mind-blowing” crisis. The WWF Living Planet Report 2018 (WWF LPR, 2018) also states that freshwater fish populations have declined by more than 80% on average since 1970 and half of the world’s shallow water coral reefs have been lost in the last 30 years (WWF LPR, 2018). Alongside this, deforestation of tropical rainforests means we are currently losing more than 100 species of plants and animals a day (Holley, 2017). In short, human’s influence on the environment greatly impacts biodiversity and we are currently burning the library of life.

How can you determine the effect of the environment on an organism?

The environment can affect an organism in a multitude of ways. The impact can be transient or longer term; within an individual or across generations. The environment can also lead to molecular, cellular, physiological or behavioural changes. For example, the expression of genes in an organism can be influenced by the external environment, such as where the organism develops or factors associated with where it is located. Gene expression could also be influenced by an organism’s internal environment, including hormones or metabolism. Finally, the genome itself – genetic factors that vary between individuals in natural populations – could also influence gene expression.

Research groups at EMBL look at how variety in organisms comes about

Untangling the impact of genetic and environmental variation can be very challenging and for a long time, scientists have tended to focus on minimising variations in the environment in order to understand how changes in genotype affect phenotype. This, alongside the deeply embedded “one genotype = one phenotype” metaphor, has meant that environmentally induced phenotypic variation has been ignored in favour of ‘‘more useful and precise’’ study of genetic polymorphisms. This is despite the fact that from as far back as the early 1900s, scientists have known that the phenotype of an individual depends on the interaction between its genotype and environmental cues! Today, we finally have the power to consider the impact of the environment on phenotype. We can make precise measurements at the molecular, cellular and organism scales in controlled environments that can be varied and we can sequence genomes at the same time.

We can also take human data paired with environmental data – for example in the context of some of EMBL’s research interests such as infectious disease and microbiomes – to understand the quantitative effects of the environment and its influence on human biology. Pioneering projects such as Tara Oceans have also allowed us to research the interactions between organisms and the environment by generating reference data, discovering emergent ecological principles and developing predictions about how ecosystems will be affected by a changing environment. Understanding how organisms exist together and in changing environments is of fundamental importance for our understanding of biological principles and our knowledge of life.

What challenges are currently being faced in this field?

Studying organisms in their environment will become increasingly important.

Understanding the behaviour of individual molecules, cells or whole organisms is already challenging. Understanding how the environment influences an organism – or populations of organisms – represents a whole new scale in complexity. This is an area that I think EMBL could uniquely contribute to in the future. It will be necessary to shift from researching organisms mainly in the laboratory to studying them in their environment. We will also need to ensure the rapid development of technologies and tools to meet these scientific needs. Alongside this, we need new approaches to integrate large, complex data sets and make sense of them. To rise up to this challenge, we need theory. We are now in a unique position to address the dynamics and complexity of living matter across multiple scales and in the context of changing environment. But we need theory to address societal and planetary issues too. We must aim for a rate of scientific discovery that outpaces the rate of calamity such as biodiversity loss, ecosystem degradation, epidemics and climate change.

What can be done to prepare for the future with regard to biological diversity, the organism and its environment?

Research, research and more research! Environmental problems such as the hole in the ozone layer or acid rain were solved by sound scientific approaches. We need to learn from these past scientific and societal successes. Today the ever-increasing numbers of new technologies are allowing us to collect, measure and store data at unprecedented scales. We also need to bring ecologists, zoologists, population geneticists and environmental experts together to address these research questions. Together we can apply cutting-edge technology with rigour, attract new scientific talent and disseminate knowledge to global communities.

What inspired you to organise this symposium?

As a geneticist and epigeneticist, I have explored the intersection between genotype and the environment and how that produces a phenotype. From observing many areas of research – ranging from social insects such as bees and ants, to plant vernalisation and variations between identical twins – I felt that the time is ripe to bring together scientists from many different areas. I also wanted this to be a symposium that would attract scientists from different areas to EMBL.

At EMBL, we want to understand the molecular basis of life. Until now, EMBL has been known for exploring genomic, molecular, structural and cell biology at the level of individual organisms. Looking ahead, we want to study organisms in the context of their physical and biological environments not just in isolation. In order to truly understand life on Earth, we need to study organisms in nature, not just in the lab. One way to understand life at the molecular level will be to try to bring relevant ecosystems back to the lab, to measure and perturb them under controlled conditions. The speakers we’ve invited are experts from many different areas of biology or ecology, and will bring exciting new perspectives to our research.

The EMBO|EMBL Symposium: The Organism and its Environment will take place at EMBL Heidelberg, Germany, from 1-4 March 2020

What is the greatest benefit of this symposium for the scientific community?

The symposium is an opportunity to address how organisms are influenced by a changing environment. It will bring together different research disciplines and go beyond pure genetic or ecological perspectives of phenotypic variation. Geneticists, molecular biologists, evolutionary biologists and ecologists do not necessarily meet under ordinary circumstances. This meeting will enable such interactions and cross-fertilisation.

What will be the main highlight of the symposium?

Today we are in a unique position to address the complexity and dynamics of life at multiple scales, from molecules to ecosystems. We also need to consider the idea that change including in the environment is not necessarily a bad thing. After all, without change, evolution could not occur and none of the amazing biodiversity of life on our planet would exist! I hope that a highlight of this symposium will be some wonderful new insights into evolutionary processes.



Holley D., (2017). General Biology II, Organisms and Ecology. Indianapolis: Dog Ear Publishing, 898.

World Wildlife Fund, (2018). Living Planet Report: Aiming higher [PDF] [Accessed 25 July 2019].

However the WWF DG is quoted by several articles as describing the crisis as mind-blowing, for example: “

Follow us:

No more browser restrictions!

For those of you who have been coming to EMBL for scientific training over the years, you may have noticed that we recently (finally?!) have a new and improved registration and abstract submission software, with a brand new look and feel.

We have moved to an HTML5 software solution, which offers an enhanced customer experience, meaning that we now no longer have browser restrictions or preferred browsers. The interface is fully responsive for submitters and evaluators alike, and is user-friendly on all devices. YAAAAAAY!!!!

The new software is pretty self-explanatory, but just in case you get stuck, here are a couple of how-to videos for abstract and motivation letter submission.

How to submit an abstract – for EMBL conferences and symposia


How to submit a motivation letter – for EMBL courses


Follow us:

10 ways to get your scientific course application accepted



We have all experienced it in one way or another. Scientists perhaps more than others – rejected papers, job applications, fellowships, grants or training applications. But what can we do when it happens again and again and again?

In the EMBL Course and Conference Office we see it all – our scientific courses are way oversubscribed, and competition is tough! We’ve taken a look at the most common mistakes that will lead to your application being rejected. These 10 tips will help you to be among the minority of successful course applicants, and while we can’t promise that every application you submit will be accepted, following these tips will ensure that you stay towards the top of the pile!

  1. Apply on time!

It sounds simple, but we have so many requests from late applicants to submit after the deadline. Newsflash – you won’t be considered! The application deadlines are part of a well-planned process, and we stick to it. So plan in advance and don’t leave things until the last minute!

  1. Complete ALL questions directly and clearly

Again – sounds simple, right? It’s amazing how many applicants think some questions are optional. Organisers have to select participants from a highly qualified pool of applicants, and if they have no comparison, you will be put straight on the “no” pile.

  1. Submit all requested documentation

Take the time to collate all requested documentation before submitting your application. If you make it past the first round, these will be vital in securing your spot in the final selection.

  1. Read the guidelines…and follow them!

Generally course guidelines will be provided. Take the time to read through them and make sure you follow them – they are there for a reason!

  1. Be sure that it is the right course for you

Make sure the course WILL actually be of benefit to you. Check that you have the required pre-requisites, and that the learning outcomes are the same as your learning desires.

  1. The motivation LETTER – not the motivation THESIS

Most likely you will be provided with a word limit. Stick to it. If you don’t have a word limit, don’t take this to mean you can write a thesis. The scientific organisers have a lot of applications to go through and limited time to do it. Yours needs to catch their eye from the onset, so make sure the important stuff stands out! 

  1. The motivation letter – the important stuff!

This is perhaps the most important part of your course application, so take it seriously! There is a lot of competition, so show that you have put some effort into it. Things that you should definitely include:

  • Why would you like to attend?
  • What do you expect to learn?
  • How will you benefit from what you learn?
  • How and when will you use the skills learned on the course?
  • A brief description of your current research and future plans
  • Any relevant skills, experience and qualifications
  • Your scientific career and training
  • Relevance in the lab – is the knowledge lacking and can you pass it on?
  1. Show academic curiosity

Make it clear that you have done your research and are actually interested in the topic. If it is clear that you are only applying for the course because your PI told you to, chances that you’ll be considered are slim.

  1. Make sure you can spare the time and, if necessary, get a visa on time

If you have other commitments or think it won’t be possible to get a visa on time to enter the country where the course is taking place, please reconsider and apply for a course taking place at a later date. Otherwise you will take the spot of someone else who would be able to attend.

  1. Show your application to your supervisor

Ask your supervisor to check over your application before submitting. They will have much more experience in submitting successful applications and can give you advice on what to change and adapt to increase your chances of getting accepted.


So it’s over to you now! And if you’re not sure where to start looking for your next scientific training course, take a look at our upcoming events under

Check out our video for some more tips on successfully applying for practical courses!

Follow us: