Balancing training with family

Balancing work with family life can be difficult, and often the opportunities for parents to advance their careers are limited as a result. EMBL and EMBO are both working to make attending scientific events easier, with EMBL providing onsite childcare at their conferences and symposia in EMBL Heidelberg, and EMBO offering childcare grants to cover the costs of having a child looked after while one or both parents attend an EMBO funded course or conference.

To avoid any confusion between the two options, here is an overview of what you might be eligible for to help you get the most out of your career and your family.

At a glance

  EMBL onsite childcare EMBO childcare grant
Eligibility EMBL Conferences,  EMBO Workshops or  EMBO| EMBL Symposia taking place at the EMBL Advanced Training Centre Heidelberg, Germany. EMBO Courses, Workshops or EMBO| EMBL Symposia. The EMBL Course and Conference Office deals only with those events taking place at the EMBL Advanced Training Centre Heidelberg, Germany. Grants for other EMBO events should be applied for directly to the individual event organisers.
Who and where? Children are looked after on campus by our highly qualified kindergarten teachers in the EMBL Kinderhaus, Heidelberg, Germany. Childcare grants are available to offset child care costs incurred by participants or speakers of EMBO events. Eligible costs include fees for a baby-sitter or child-care facility, travel costs for a care giver, or travel costs for bringing the child to the city/town where the meeting is being held, etc.
Languages The two main languages of the teachers are German and English. N/A
Childcare times 8:30am – 5:50pm for the duration of the conference Grant applicable for costs incurred in relation to child care costs during the meeting.
Financial details A subsidised fee of €100 per child is payable by the conference participant A total of €1000 is available per meeting, with a general cap of €500 per person. This can be allocated based on need at the discretion of the organisers.
What’s provided? All necessary equipment such as meals, beds, toys and diapers are provided. Eligible costs include fees for a baby-sitter or child-care facility, travel costs for a care giver, or travel costs for bringing the child to the city/town where the meeting is being held, etc.
Who is eligible? One or both parents must be registered participants, organisers or speakers at the corresponding conference. The child must be between 3 months and 3 years of age. Childcare grants are available to anyone attending the event (speakers, organisers, trainers, participants etc.)
How to apply Registration for childcare must be made online 6 weeks before the start of the event by using the “register for childcare link” on the individual conference website. Applicants must indicate during the abstract or motivation letter submission process how much funding they would like to apply for, and what it will be used for. They should also indicate at what stage of their career they are.
Allocation process As childcare spaces are limited, registration will be on a first-come first-served basis. Your place can only be confirmed after payment of the registration fee. The selection is handled by the EMBL Course and Conference Office. The amount of money awarded for the childcare grant is dependent upon the number of applicants per event. The selection is handled by the organisers of the respective meetings.
Contact details childcare@embl.de or Tel.: +49 (0)6221 387 8797. Please contact the organisers of the individual event for more information.
Website EMBL Onsite Childcare

EMBL childcare testimonials

EMBO Childcare Grants

Press release – EMBO childcare grants now available

Please follow and like us:

BioMalPar’s most loyal friends

Meet Prof. Peter Preiser and Dr. Stefan Rahlfs, two of BioMalPar’s most loyal participants, who have not missed a conference since 2009 and 2010 respectively. They recount their experience from previous events of the series and share with us their expectations of the upcoming conference.

How has the conference developed over the years in your opinion and what makes you come back every year?

PP: The BioMalPar conference is unique in that it is one if not the only annual conference that focuses on the molecular and cellular aspects of the malaria parasite. It therefore has always represented an ideal meeting to catch up with the latest developments in the field. Due to its focus on giving PhD students a chance to present their work the meeting always had a “new” feel to it which I particularly appreciated.

SR: The conference has always drawn participants from all over the world, and presented interesting talks by both experienced and young researchers. However, getting to the conference venue used to be much more difficult and the early events took place in office rooms and a tent (it was pretty hot in there!). But things have changed significantly since then. Now there is a new parking garage, a new conference centre, which I like very much – light, modern, scientific.  The best part is the “helix” where you have to find your way walking on a base pair bridge .

PP: Clearly the conference has changed over time – this was partly due to the end of the EU funded BioMalPar programme and therefore the discontinuation of the PhD programme, but still it retained its focus on giving young researchers an opportunity to present their work. Today the meeting is a nice balance between young and more established researchers, which means there are the hot-off-the-press type presentations representing the work of a single researcher along with the more comprehensive research achieved through a multi-team effort.

SR: The quality of the talks remains impressive with a good mixture of topics. There is always a keynote lecture followed by short talks. Workshops and flash talks are now included and I have learned a lot about different people especially the ones receiving the Lifetime achievement award.

PP: The establishment of the Lifetime achievement award was something that I felt was particularly important as it provided many of the young researchers attending the meeting a perspective of the immense contributions the previous, slightly older generation had made to the field.

What’s the best memory you have of a BioMalPar conference?

PP: For me it has always been the relaxed attitude of the meeting and the opportunity to discuss science over a beer at the posters or outside (weather permitting) on a mild spring evening. Many fantastic ideas were generated through these discussions.

SR: The things that always stay in my mind are the fantastic venue, attractive program, nice age-mixture of people and the friendly atmosphere. I always go home with respect for others’ work but also with new ideas for my own research. At one of the BMP conferences I personally met Prof. Hagai Ginsburgh, and once he combined his stay in Germany with a trip to our Giessen-University for some days. This was very impressive and constructive at the same time.

In your opinion, what challenges is malaria research facing and how does coming to BioMalPar address these problems?

PP: I think the effort to control and eliminate malaria has made significant progress and we are now getting to a critical phase in the global effort. It is now important to ensure that efforts to control the disease are not slackened and that funders continue to support this important health initiative. From a research perspective we still have key challenges in terms of drug resistance and the lack of an efficient vaccine, not to mention the issue of P. vivax. It is particularly in these areas where BioMalPar can stimulate the right discussions and interactions that will eventually lead to significant benefits in controlling the disease.

SR: It is still a disease occurring in poor countries and resistance is always a problem. Although bed nets help a lot and a vaccine is available (which is not very effective, but the best mankind has been able to provide so far), research must go on. And in rural areas infrastructure for distribution of newly developed drugs or vaccines needs to be installed. For research there is a gap between industry (monetary research) and universities (basic research), which is due to their different settings.

Looking at the programme of this year’s conference, what do you think will be the highlight and what would you like to see in the next edition in 2020?

PP: This is hard to say as based on the titles there appear to be many new and exciting topics on the programme. I am quite intrigued about the work going on with the mosquito vector and possible ways a better understanding in this area may provide us with better tools for intervention. I am also excited about the use of stem cells to study malaria parasites, as this technology would significantly help me to address some of the questions I am interested in.

I think one of the key things that I would like to see develop more in the future is a better link between the basic research presented at the BioMalPar conference and how this could be utilised in a more clinically relevant context. For example, how does our understanding of malaria immunology help in developing a better vaccine or how do we use the vast amounts of genomic data more effectively for the discovery of new drugs, new vaccine targets or even better diagnostic markers. Some of this is already happening but a lot more can be done.

Prof. Preiser, you will present a short talk titled “Comparative mapping of Plasmodium proteomes provides new insights into erythrocyte remodelling”.  What can participants expect to learn from your talk?

I have always wondered about how the malaria parasites changes its host cell. In particular, I was intrigued about the apparent differences that different malaria parasite species have developed in modifying the same type of host cell. However, most of our knowledge on this is based on the study of a single parasite species P. falciparum. My lab has therefore tried to develop new approaches to study the differences the different plasmodium species have developed by using human, simian and rodent malaria parasite species and identify all the different proteins that the parasite exports into the host cell. This approach has given us some very surprising results that I will talk about during the meeting.

Dr. Rahlfs, you will present a poster titled “Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies”.  Can you give us a short preview of your poster?

As a member of the “Becker-lab” in Giessen we are focusing on redox metabolism as drug target and on redox regulations in general and under stress. A number of gene knockouts of our group but also others mostly do not have big impact (due to redundancy), but the importance of the Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) in P. falciparum has been demonstrated by a lethal phenotype. Now we would like to expand this knowledge also on P. vivax. We cloned P. vivax glucose 6-phosphate dehydrogenase (PvG6PD), the C-terminal and NADPH-producing part of PvGluPho, recombinantly produced it in Escherichia coli, purified and characterised the enzyme. IC50 values of several compounds were determined on P. vivax G6PD, inhibitors that had been previously characterised on PfGluPho.

 

Please follow and like us:

Happy birthday VIZBI!

By guest blogger, Helena Jambor, PhD, TU Dresden, @helenajambor

10 years after it all started, VIZBI came back to its original stomping grounds, the ATC at EMBL in Heidelberg. As its name suggests, VIZBI “Visualizing Biological Data”  is a blend of several worlds. Of biology, with its long history in visualizations that goes back to Ancient Greek text books, and of art and scientific illustration.

Venn diagram of VIZBI disciplines: microscopy and EM data, transcriptomics and computer science. (Note: a 5-circle Venn cannot show all possible overlaps, which is fully intended here)

VIZBI is also inseparable from computer science and its tools to transform big data into human readable entities. And finally, VIZBI incorporates concepts of design and visual perception to make visualizations engaging and enlightening.

Highlighting spectacular biological images

At VIZBI 2010, microscopic images were omnipresent. Back then, I was embarking on my postdoc project, a large-scale microscopy screen of RNAs in cells. My memories tell me that this was the main focus of the conference. Indeed, a quick check of the 2010 program confirms that almost the entire community of light sheet microscopy and image processing were in attendance at the first ever event.

VIZBI 2019 continued to highlight spectacular biological images. A phenomenal augmented reality installation showed them in 3D, EM-tomography simulations by Peijun Zhang animated the 64-million atoms assembling into HIV particles, and Lucy Collinson shared the high numbers of high-resolution EM data collected at the Francis Crick Institute. This large amount of data is annotated with the help of amateurs, for example in their citizen science project at the Zooniverse “Etch a cell”.

Colourful confocal images or images of tissues also provided the inspiration to many works of illustrators on display that combined science and art, for example the double win of best poster and best art to a depiction of tubulin in a mitotic spindle by Beata Mierzwa @beatascienceart, a hugely talented artist and scientist (who also sells cool cytoskeleton-printed leggings and mini-brain organoid dresses).

Data visualization

At VIZBI 2019, visualizations of data – as opposed to images – gained a much more prominent spot. All keynote speakers were from the technology side. Hadley Wickham presented the history of ggplot2. Ggplot2 (and yes, there once was a ggplot1!) is the R universe for visualizing pretty much everything that comes in numbers and is now merged into the tidyverse. Being a visualization talk, all slides were themselves beautiful, I love the tidyverse playfully represented as stars of our universe! The second keynote was by Janet Iwasa who presented her animation work that heavily relies on 3D and computer graphics software used for animation films. Instead of earning her money in the film industry, she decided to put it to good use for biology. Janet first used her skills in her PhD project to visualize motor proteins “walking” along the cytoskeleton, and these days produces Oscar®-worthy movies showing biology, such as the origin of life or the life cycle of HIV. And everyone take note: all her films start as a storyboard on paper, which is what I teach as good practice for all visualization designs.

Making the invisible visible

The third keynote was by Moritz Stefaner, a data designer who is enticed by biological data but appalled by the time-scales in biological projects (too long!). Luckily, he hasn’t given up on us just yet, and keeps producing phenomenal visualizations. For example, showing absence and loss is notoriously hard, but Moritz found a beautiful way to make the invisible visible in his designs for “Where the wild bees are” with Ferris Jabr for Scientific American.

Making absence visible, a project by Keynote speaker Moritz Stefaner. Photo: H.Jambor

Moritz left us hungry for more when also showing his data-cuisine project, that visualizes data about food and turns food into data: the number of berries picked in Finland become a layered dessert, and common causes of death are encoded as praline fillings – you never know which one you’ll get! (Luckily this was with Belgium pralines, so all deaths are sweet.)

Feedback wanted!

Visualizations of data were in the spotlight of many other projects too. This is of course owed to the many possibilities of large-scale methods that swamped biology with data in recent years: RNAseq, inexpensive genome sequencing, mass-spec at fantastic scales, robotics driven biochemistry and medicine, image processing that turns images into insights by quantifying signals and so on. RNA sequencing, for example, fuelled Susan Clark’s project tracing methylations in cancer, Phillippe Collas’ ambitious endeavour to understand 3D genome architecture, and is empowered by Charlotte Soneson’s “iSEE” software to interactively analyse data from high throughput experiments and the project of Kirsten Bos tracing human pathogens back thousands of years by sequencing tiny dental samples. And of course, of the biggest data projects in biology is the ENSEMBL genome browser, which was officially released as pre-alpha version VIZBI (check it out: 2020.ensembl.org), the very approachable Andy Yates and his team are looking for feedback!

Technical Challenges

Visualizations of high-dimensional datasets are not without problems. The technical challenges were addressed by David Sehnal who showed computational infrastructure to visualize protein structures (MolStar). The mathematical problems of dimensionality reductions were a topic of Wolfgang Huber’s talk, and a tool to visualize, and thereby find(!), batch effects, “proBatch”, was presented in the flash talk by Jelena Čuklina (they welcome beta-testing by users!). Teaching science visualizations, I often see a great need to discuss ethical and practical aspects. Critically assessing limitations and challenges of scientific visualizations might be a topic to be expanded in future, when VIZBI enters its second decade. This should be coupled with visual perception research, after all, we are no longer limited by computational power, but rather by what our eyes and brains can comprehend (see Miller 1956).

Flash talks

“Data dancing” © Alex Diaz

Speaking of flash talks: the conference organisers did such a great job in highlighting every single one (!) of the posters by one-minute talks. I tremendously enjoyed them, admittedly in part because I have a short attention span. Among the talks and art was also “Data dancing” by Alex Diaz. He showed that art and beauty can also be found in statistics and numbers blossoming like flowers across the page. On that note: see you next year in San Francisco!

 

P.S. Many more highlights I was unable to cover here. Check https://vizbi.org/2019/ for all posters and slides of the flash talks, check #VIZBI on twitter and my public collection of participants twitter handles (https://twitter.com/helenajambor/lists/vizbi2019).

The VIZBI organising team – James Procter, George Luca Ruse, Seán O’Donoghue, Christian Stolte, photo: H.Jambor

 

 

Please follow and like us:

Highlights from the 2019 Visualizing Biological Data (VIZBI) Workshop

Meeting report by EMBL event reporter Dagmara Kaczynska

In March I had the amazing opportunity to take part at the 10th Visualizing Biological Data (VIZBI) workshop as an EMBL event reporter. This year VIZBI lasted for 3 days and included various sessions: DNA, RNA, Proteins, Cellular Systems, Tissues & Organisms as well as Populations & Ecosystems. As it was my first VIZBI conference I had wondered how it is possible that one workshop contains such a diversity of topics. Who is the audience? Who are the speakers? Even if you missed the VIZBI workshop this year, let’s relive it together.

What is VIZBI?

To start uncovering VIZBI let’s first visit the website. It shows that VIZBI focuses mostly on how data is represented, not only what it presents. What’s more, we learn that the audience consists of a variety of crafts such as scientists, medical illustrators, graphic designers, artists and computer scientists. This multidisciplinarity is also visible in the program of the conference. Although most of the speakers are researchers, we can also expect talks from statisticians, computer scientists, animators and data visualization experts. This collaborative approach of VIZBI makes it possible to find common patterns and guidelines to make a good visualization of biological data. Most importantly, participants of the VIZBI conference believe that good visualization is the key to scientific communication.

While thinking about a visualization, think about data first

To begin with, let’s slice and dice the ‘biological data visualization’ concept by asking – what is visualization? As the first keynote speaker, Hadley Wickham, pointed out most of us has a very different perception on what it actually means.

As the workshop touched upon topics varying from DNA to ecosystems there are also many ways to visualize them. Regardless of the field of study, Hadley Wickham recommended to ‘firstly, think about the data’. The main goal is to decide on a message and a story behind the findings. After answering these fundamental questions one can start looking for the best means to visualize them.

Biological data is complex

Following his recommendation, let’s take a look at data presented during the conference. It was not surprising to learn that biological data is, quite simply, complex – regardless of whether one studies genomes, proteins or tissues. Philippe Collas discussed the complexity of a genome, composed of various elements, that forms different structures.  He made a point by saying that ‘three dimensions (3D) matters’ and an image is just a representation of a real case scenario.

Life happens in 3D so images cause danger of misinterpretation

Almost all the speakers mentioned that life happens in 3D, which causes many struggles in the visualization and interpretation of data. When Lucy Collinson introduced electron microscopy data she emphasized that 2D views (such as images) of 3D scenes (such as proteins) can be misinterpreted.

However, this problem concerns all biological fields. For example, Philippe Collas and Andy Yates discussed the complexity of a genome. Susan Clark presented how the 3D organization of epigenome is disrupted in cancer.

Moreover, Marc Baaden tackled the difficulties of recapitulating dynamics in a static image. In contrast, Loïc Royer showed 4D videos of morphogenesis and challenges with microscopes such as focus or stabilization of images as well as the importance of digital image processing.

Data and visualizations need to be cleaned and structured

In order to form the main message of a discovery, one needs to understand the complexity of data. Many speakers advised to clean and structure data as a first step of analysis. Here, Moritz Stefaner showed the image from Ursus Wehrli ‘The Art of Clean Up’ to represent the art of tidying up.

What’s more, structuring your visualization will help an audience understand the concept better. Hadley Wickham believes that orthogonal components make it easier to compare and remember (in this case using purr library in R).

Data analysis needs to be well documented (preferably in a form of code)

It is obvious that the analysis of biological data is not trivial.  What’s more, one set of data may lead to many different observations. Most of the speakers drew attention to the importance of documenting data and pipelines of analysis. Many advised to use codes. ‘A code is readable, reproducible text’ as Hadley Wickham presented. Most scientists, especially those from RNA and DNA fields such Charlotte Soneson, Irmtraud Meyer and Wolfgang Huber, shared the same opinion.

Data needs story for visualization

Now, when data is cleaned and tackled it is time to decide on the message and a story. Then, one can investigate possible ways of visualizing the findings. How can one find the best way to visualize data? Probably the most common advice was by trial and error, learning what others do, using design concepts, consulting with others. However, if you really have a clear purpose it will be much easier. Moritz Stefaner also believes that scientists have too much trust in the defaults. For example, he showed that rainbow gradient is not necessarily the best one!

Data analysis and visualization need iterations

According to Moritz Stefaner, Loïc Royer and Hadley Wickham, iterations are the key for a good data analysis and visualization. Prototyping and modifying should be a habit of all scientists. Only by iterating can we create something of great value and importance. One needs to ‘create a bunch of bad visualizations that need to be iterated as long as you find the best solution’ Hadley Wickham summarized.

Illustrations and animations capture the complexity of data

As mentioned above, the VIZBI society cares and makes an effort to prepare good visualizations. They believe that visualization is the key to every communication – illustrations and animations make a concept easier to understand. A recipient is able to grasp a research idea much faster. Janet Iwasa also showed that animation enables showing the complexity of biological data as they are in 3D. It can make a hypothesis more accurate and discoveries much clearer. She compared a model figure with a snapshot of her animation to illustrate the difference in perception.  What’s more, to make an animation one needs to fully understand a concept to illustrate it, which makes a finding more precise.

Conclusions

To conclude, although at first sight it seems that all VIZBI session are very diverse, in fact they have a lot in common. All present ways to visualize biological findings based on data. Having said that, the data and visualization techniques are very versatile, but there is a common pipeline. To make data clear to everyone the clue is to find the best way to visualize it by iterating and modifying different solutions. In order to find the best means we need to focus on a main message and story. To create a story we need to fully understand the data by cleaning, structuring and analyzing. Keeping a good documentation in the form of codes, storyboards and notes make findings transparent and reproducible to others. Communication is key in the progress of science, and scientists can improve their visualization methods and skills. VIZBI participants believe that it is worth putting in a lot of effort to make data more understandable and memorable.

Remember to have fun and use your creativity! I definitely had a lot of fun as an event reporter at the 2019 VIZBI workshop, and will incorporate all these lessons in my daily research.

If you have any questions or would like to discuss biological data visualization, please write me a message.

All the images were taken during the conference using private phone. All the images are set to presenter’s names. There are no images of slides that presenters asked not to tweet about.

Please follow and like us:

Celebrating 15 years of BioMalPar

In honour of World Malaria Day and ahead of the 15th annual EMBL conference on the Biology and Pathology of the Malaria Parasite (BioMalPar), we spoke to the conference organisers Richárd Bártfai, Kirk Deitsch and Lyn-Marie Birkholtz, as well as Andy Waters from the BioMalPar steering committee – which is responsible for selecting the scientific organisers each year – to find out where the field is heading.

Richárd Bártfai, Lyn-Marie Birkholtz, Kirk Deitsch and Andy Waters

 

The BioMalPar conference is celebrating its 15th anniversary this year. How did it all start and how has it developed over the years?

AW: I was part of the organisation of the original meeting in 2004 and have attended every iteration since.  It was originally a dual-purpose meeting designed to bring together the participants in the EC funded Network of Excellence of the same name, “BioMalPar”, the students in the associated PhD school that it funded, and to serve as an international meeting on malaria.

LB: I started attending BioMalPar in 2006 and was inspired by the format of the conference, allowing such great interaction and exposure to young scientists. It always allows the most cutting edge (mostly unpublished) research to be presented, and the addition of workshops to the conference programme allows for additional opportunities for learning, and these workshops are new and trending every year.

2018 BioMalPar conference at the EMBL Advanced Training Centre

What inspired you to organise this conference?

LB: This meeting to me is THE malaria conference that I annually attend. As a researcher from a malaria endemic country, I was inspired to organise the conference to strengthen exposure of the great research performed in such countries at the conference, and provide context for the research findings to show how the excellent research presented have direct impact to people’s lives living with malaria.

RB: This meeting is a prime example of a community effort. Hence organising it is an honour and a great way to serve our community. I very much enjoyed the collegial and welcoming atmosphere created by former organisers and I hope that we will manage to recreate some of it this year as well.

KD: In recent years, the conference has become more widely attended by non-European scientists and is now an event attended by investigators from throughout the world. When I was invited to participate in the organisation of this year’s meeting, I considered it an exceptional opportunity to interact with international colleagues and build stronger ties for exchanging ideas and potential collaborations.

The format of the conference is a bit distinct from that of other meetings in that the majority of talks are reserved for selected short talks. What is the benefit for the programme to have mostly selected talks?

KD: Reserving the majority of each session for short talks ensures that the latest, unpublished data will be presented at the meeting. Highlighting young investigators presenting new data for the first time also lends an air of excitement to the sessions that adds to the overall “buzz” of the conference.

LB: This is in my opinion one of the main strengths of the conference. The audience will have the ability to hear new data ‘straight from the horses mouth’ as the short talks are mostly presented by early career scientists and mostly covers unpublished work.

AW: The emphasis is on packing in as much new science by the early career researchers as possible.  This format makes it possible and allows one to work to themes in terms of the meeting organisation

RB: We will have excellent keynote lectures this year to set the stage and provide broad overviews on specific subjects. Yet, selected talks offer opportunity to young research fellows to share their exciting, unpublished findings.

The poster sessions allow researchers to present their findings

The short talk selection for this year’s edition has now been finalised. Could you share what the focus and highlights of the conference will be?

RB: The content of the short talks is traditionally kept secret till the start of the meeting and I do not want to break this tradition ;-). But we as organisers had a hard time to make a selection out of the numerous excellent abstracts submitted, so I am certain that the scientific standard of the meeting will be very high.

LB: As organisers, we were very happy to have a large basis of excellent abstracts to select from, which will make the final choices exciting to come and listen to!

In your opinion, what challenges is malaria research facing and how close are we to an effective malaria vaccine?

KD: Everyone in the field is thrilled that a malaria vaccine is now being deployed for the first time. However, we also recognise that this vaccine has significant shortcomings in terms of its efficacy and longevity of protection. Research into the nature of the immune response of people infected by malaria parasites, as well as identifying new drugs and drug targets and methods of vector control will all contribute to our ability to control the disease.

LB: With the trial roll out of the RTS,S malaria vaccine in Malawi, we are indeed closer to evaluating the large scale effect of this intervention. However, malaria is a very complicated disease and we should continue with our multifaceted integrative control strategies, which will possibly be the only way we can really have an impact towards elimination. Our research challenges remain to inform policy makers as to the importance of continued funding of the work and for the research community to continue translating these to tangible outcomes, as we have done successfully for the past decade.

RB: Despite substantial progress in the last decades elimination of malaria is still out of our reach. Integration of insight gained in various fields will be essential for generating breakthroughs in drug/vaccine development and vector control alike. The BioMalPar meeting certainly provides an excellent platform for the exchange of innovative ideas and hence will help to bring the well-desired goal of malaria elimination closer to reality.

Please follow and like us: