How to present a memorable flash talk in 12 easy steps

Flash talks are a great way to give an introduction to your work, and whet people’s appetite for your research.

Generally flash talks last for 1 to 2 minutes, and presenters are normally allowed one simple PowerPoint slide or, in the case of virtual events, a 1 – 2 minute pre-recorded video. But is it really possible to present something really memorable within such limitations?

Here are some things to take into account when preparing your flash talk to make sure the audience remembers you, and contacts you after the session to find out more. Because that’s the goal, right?

1. Keep it brief

You should definitely start by giving a very brief introduction that makes people understand why your work is interesting, and ends by saying how people can contact you afterwards. Of course you can say where you’re from and your affiliation, but the critical thing is to attract to people’s attention.

2. Cover the basics

Answer the following questions:

  • Why is it interesting?
  • What is it about?
  • How did you do it?
  • With whom did you carry out the work?

3. Connect with the audience

For live events be sure to always look at the audience – don’t lose eye contact. Keep scanning the room for the duration of your talk, and definitely do not turn your back to them. In the case of a pre-recorded video, treat your camera like an audience and talk directly to it.

 4. Leave the audience asking for more

Try to build up the anticipation and attention of the people who are listening and watching– put out something you’ve investigated but don’t tell them the whole story. You want to leave them hanging and intrigued enough to want to find out more.

5. Be dynamic

Your flash talk is going to be short so your audience will generally be paying attention to you. Build up to something where you clearly emphasise one or two points. These are the sort of things that are going to bring their attention to the most important parts. Be enthusiastic – if you show that you’re really into your science people will come along and want to know more.

6. Don’t be afraid to use visual tools

If it’s relevant, there is no problem with using props in your flash talk. Alternatively, make your talk visually memorable by using dynamic diagrams, graphics and images. Videos will normally not be possible for live flash talks, so don’t rely on these.

7. Avoid special effects

It is possible to make something visually memorable without going overboard on big special effects such as PowerPoint animations. If your science is good it doesn’t need any fireworks.

8. Do the unexpected

If it fits with your character, you can try to make people laugh. Doing something that the audience is not expecting can be very effective. We’ve seen everything from interpretive dance to a guitar-accompanied talk – anything is possible! Just make sure it matches somehow to who you are so that it appears natural.

9. Include your poster number

At onsite conferences definitely, definitely, definitely include your poster number during your flash talk! It will make it much easier for people to come and find you later on at the poster session.

10. Be a slide minimalist

As already mentioned, diagrams, graphs and images are great when you have only 1 or 2 slides at your disposal. Make sure though that there is a minimum of information on your on your slides to try to bring people into the main message – focus on the thing that you want them to remember.

11. Practise!

Like all talks, you need to practise beforehand! Even if you want to bring across that you’re relaxed and everything is quite informal there is no way around it – you’ve got to practise to be prepared.

12. Stick to the time limit

With a flash talk this is so important – the time limitations are extremely strict, and you will be moved off the stage when your time is up, or your video won’t be uploaded to a virtual event platform. So make sure you have condensed everything into the time provided, and don’t go over or you may be stopped mid-sentence!

Original video with Dr. Cornelius Gross, EMBL Rome, and Dr. Francesca Peri, University of Zurich

Follow us:

Best Poster Awards – The Non-Coding Genome

Taking place for the third time,  the EMBO|EMBL Symposium: The Non-Coding Genome (16 – 19 October 2019) brought together 305 RNA experts to discuss the roles of non-coding RNAs in both prokaryotes and eukaryotes, gene regulation and function. 

A total of 189 posters were presented, from which two were singled out as the winners by popular vote.

Characterization of the genomic and splicing features of long non-coding RNAs using bioinformatics approaches

Monah Abou Alezz is a Ph.D student in genetics, molecular and cellular biology at the University of Pavia, Italy. PHOTO: Monah Abou Alezz

Authors: Monah Abou Alezz, Ludovica Celli, Giulia Belotti, Silvia Bione, Institute of Molecular Genetics L. L Cavalli-Sforza – National Research Council, Italy

Recent developments in deep sequencing approaches have simulated the continuous discovery of a significantly large number of novel long non-coding RNA (lncRNA) genes loci in the genomes. Long non-coding RNAs are recognized as a new class of regulatory molecules despite very little is known about their functions in the cellular processes. Due to their overall low expression level and tissue-specificity, the identification and annotation of lncRNA genes still remains challenging. The characterization of lncRNAs’ features is crucial to understand and get functional insights on their mechanisms of action. We exploited recent annotations by the GENCODE compendium to characterize the genomic and splicing features of long non-coding genes, in comparison to protein-coding ones, in the human and mouse genome by using bioinformatics approaches. Our analysis highlighted differences between the two classes of genes in terms of gene architecture regarding exons and introns length, GC-content, and the combinatorial patterns of chromatin marks and states. Moreover, significant differences in the splice sites usage were observed between long non-coding and protein-coding genes. While the frequency of non-canonical GC-AG splice junctions represents about 0.8% of total splice sites in protein-coding genes, we identified a remarkable enrichment of the GC-AG splice sites in long non-coding genes, both in human (3.0%) and mouse (1.9%). In addition, we identified peculiar characteristics of the GC-AG introns in terms of donor and acceptor splice sites strength, poly-pyrimidine tract, intron length, and a positional bias of GC-AG junctions being enriched in the first intron. Genes containing at least one GC-AG intron were found conserved in many species across large evolutionary distances, more prone to alternative splicing and a functional analysis pointed toward their enrichment in specific biological processes such as
DNA repair.

View PDF Poster


MirGeneDB 2.0: The metazoan microRNA complement

Bastian Fromm is a Senior Researcher at Science for Life Laboratory, Stockholm University, Sweden. PHOTO: Bastian Fromm

Authors: Bastian Fromm (1), Diana Domanska (2), Eirik Hoye (3), Vladimir Ovchinnikov (4), Wenjing Kang (5), Ernesto Aparicio-Puerta (6), Morten Johansen (7), Kjersti Flatmark (3), Anthony Mathelier (8), Hovig
Eivind (3), Michael Hackenberg (6), Marc Friedländer (5), Kevin Peterson (9)

Non-coding RNAs (ncRNA) have gained substantial attention due to their roles in human disorders and animal development. microRNAs (miRNAs) are unique within this class as they are the only ncRNAs with individual gene sequences conserved across the animal kingdom. Bona fide miRNAs can be clearly distinguished from the myriad small RNAs generated in cells by a set of unique criteria. Unfortunately, recognition and utilization of these clear and mechanistically well understood features is not a  common practice. We addressed this by extensively expanding our curated miRNA gene database MirGeneDB to 45 organisms that represent the breadth of Metazoa. By consistently annotating and naming more than 11,000 miRNA genes in these organisms, we show that previous miRNA annotations contained not only many false positives, but surprisingly many false negatives as well. Indeed, curated miRNA complements of closely related organisms are very similar and can be used to reconstruct evolution of miRNA genes, families and biogenesis across more than 1 billion years of evolution. MirGeneDB represents a robust platform for providing deeper and more significant insights into the biology of miRNAs, possible sources of mis-regulation, and evolutionary mechanisms. MirGeneDB is publicly and freely available under http://mirgenedb.org/.

View PDF Poster

Fromm, B. et al. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Research, gkz885, (2019), https://doi.org/10.1093/nar/gkz885

(1) Science for Life Laboratory, Sweden
(2) Department of Informatics, University of Oslo, Oslo, Norway
(3) Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
(4) School of Life Sciences, Faculty of Health and Life Sciences, University of Nottingham, United Kingdom
(5) Stockholm University, SciLifeLab, Sweden
(6) Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
(7) Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
(8) Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
(9) Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America


Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by .

Follow us:

No more browser restrictions!

For those of you who have been coming to EMBL for scientific training over the years, you may have noticed that we recently (finally?!) have a new and improved registration and abstract submission software, with a brand new look and feel.

We have moved to an HTML5 software solution, which offers an enhanced customer experience, meaning that we now no longer have browser restrictions or preferred browsers. The interface is fully responsive for submitters and evaluators alike, and is user-friendly on all devices. YAAAAAAY!!!!

The new software is pretty self-explanatory, but just in case you get stuck, here are a couple of how-to videos for abstract and motivation letter submission.

How to submit an abstract – for EMBL conferences and symposia

 

How to submit a motivation letter – for EMBL courses

 

Follow us: