14th EMBL Conference: Transcription and Chromatin

Event Report by Apoorva Baluapuri, University of Würzburg, Germany

As it happens frequently in life, there is always something good that comes out of a bad situation. The scientific world seems to be in the midst of a similar bad situation, where all possibilities to share exciting discoveries and network among peers in person have disappeared, no thanks to a merely 200 nm wide particle of protein. However, the good thing that came of it was the ability to virtually participate in conferences and talks at a reduced cost, and also without raking in carbon footprint.

The 14th Transcription and Chromatin conference at EMBL showed how such virtual hosting can be done in an excellent manner. While the new format took some getting used to, such a minor inconvenience was a small price to pay for making the new science accessible to researchers around the world – and many of them who would not have joined a conference in a different continent in person, tuned in from the comfort of their homes and offices.

A word cloud composed of the titles of the talks from Day 1 showcases the range of topics in focus.

In fact, thanks to the intuitive features of Zoom, many more questions were asked following the talks at the conference, with intense rigour and enthusiasm particularly from the younger participants. Due to the considerations of time-zone differences, the meeting was restricted from 14:00-22:00 CEST (approx.) and consisted of 15-20 minutes long talks, which turned out to be very fruitful in terms of keeping things concise while maintaining the interest.

The titular opening session was dedicated to mechanisms of transcription in eukaryotes. The range of speakers truly covered every end of the spectrum in all respects. While seasoned scientists like Patrick Cramer (Max Planck Institute for Biophysical Chemistry, Germany) showcased the lessons learnt in transcription initiation, promoter-proximal pausing and elongation from Pol II structural biology, young scientists like Kinga Kamieniarz-Gdula (Adam Mickiewicz University, Poland) also dazzled with new insights into transcription termination.

Similar trend was noted in the area of chromatin topology with Ana Pombo (Max Delbrück Center for Molecular Medicine, Germany) showcasing Genome Architecture Mapping which found variable 3D topology in brain cells at both short and long genomic distances, and integrated it with single-cell RNA-Seq data to get cell-type specific gene expression. Display of new technologies was relentless with Kyle Eagen (Northwestern University, USA) showing how BRD4-NUT (which recruits P300 histone acetylase) drives interactions to form a specific nuclear subcompartment, and how a PROTAC against it abolished the subcompartment interactions.

In times when scientists are mostly working from home, Steve Henikoff (Fred Hutchinson Cancer Research Center, USA) took the concept to a new level by showcasing a new protocol for CUT & RUN called CUT&Run @ Home, which can actually be performed in your own garage. This was truly inspirational!

However, regulation of X chromosome was not left behind, and Asifa Akhtar (Max Planck Institute of Immunobiology and Epigenetics, Germany) H4K16ac and X chromosome regulation. It was shown in really exhaustive detail how histone acetylation is not just a way to open the chromatin structure, but it’s also a much more elaborate and elegant system controlling gene expression in both Drosophila and mouse.

As usual, what was very obvious was the affinity of the speakers towards incredible puns and double entendre! While Alistair Boettiger (Stanford University, USA) mentioned that he thinks of TADs as more like “dancers”, rather than architects of nucleus, Karolin Luger (University of Colorado Boulder, USA) showed cool structural data indicating how SPT16 CTD “hugs and protects” exposed DNA binding surfaces on nucleosomes.

When it comes to transcription in the 2020s, the phenomenon of phase separation cannot be ignored. Thanks to Bob Kingston (Harvard Medical School, USA), who showed the functional role for phase separation in a system, where PRC1 subunit CBX2 CaPS domain drives phase separation in cells; and David Gilmour (The Pennsylvania State University, USA)  who explained the consequences of too short and too long consensus Pol II CTDs, it was clear that the phenomenon has clear and present relevance in transcription.

However, the core mechanistic session related to Pol II was not neglected either: Steve Buratowski (Harvard Medical School, USA), showed that Pol II CTD phosphorylation cycle is all about time and not distance on genes. Using single molecule imaging system, he showed two modes of Pol II association on promoters: short duration via Mediator in contrast to long duration via PIC. Amazingly, he found time to talk about Elongation Factor dynamics as well.  It turns out that elongation exchange can happen on moving Pol II as well, and was shown for SPT5 that it actually disassociates while Pol II remains bound, with a new SPT5 binding event being recorded later.

That being said, this conference was not just about basic science and mechanisms – but included lessons learnt from applying the mechanistic understanding into the translational aspects of science. For example, Ali Shilatifard (Northwestern University Feinberg School of Medicine, USA) showed that inhibiting Super Elongation Complex (SEC) by small molecule inhibitors reduces Pol II speed (in terms of kb/min by FP-4sU-Seq, and not pSer2 Pol II ChIP-Seq – no sloppy work shown at this conference !!) and helps in recovery of MYC driven tumours in mice.

Towards the last session of the conference, there was a nice mix of talks covering transcription elongation and termination, with Hanneke Vlamming (Harvard Medical School, USA) (one of the few post-doctoral researchers who delivered the talks!!) showing that for Pol II, the elongation potential is encoded in DNA sequence. She also indicated that mRNA sequences are not only easier to transcribe for Pol II, but also for maintaining steady state RNA and protein levels. At the same time, Torben Heick Jensen (Aarhus University, Denmark) showed the effects of depleting Integrator, indicating that Integrator depletion causes decrease OR increase of transcriptional read-through, depending on the genes if they are multi or mono-exonic. What seemed really striking was also the report that heat shock triggers increased elongation rates of Pol II while inducing premature termination – as shown by Jesper Svejstrup (now at University of Copenhagen).

Finally, the conference wrapped up with Shelley Berger summarizing the new findings from her lab changes in foraging behaviour of ants based on epigenetics, with the cool finding that HDAC inhibitors induce changes in “caste” of ants.

In many ways, this conference was a first for a lot of people. The ease with which young scientists could ask questions in Zoom and interact with the speakers on Slack was definitely the highlight – but left some scope for improvement in terms of how poster presenters interacted with the audience. In the words of a few presenters, it seemed extra work to upload the data in parts when some of the other conferences allowed them to upload just the PDFs of their posters. Nevertheless, the Zoom sessions were still adequate for the individual poster sessions.

What was truly enjoyable and an upgrade from in person socialising at conferences was the Social Mixer Event! It was an amazing experience to meet so many new people (and say hello to a few old acquaintances) during the speed networking. Hope this is a recurring theme in the years to come.

This bring us to introspect the utility of virtual conferences when the emphasis to reduce the carbon footprint has been on the rise. Maybe alternating between virtual and in-person conference, or a hybrid model with virtual and in-person talks in the future would be that way to go.

Follow us:

Expanding the Druggable Proteome with Chemical Biology – Best Poster Awards

The 2020 conference season at the EMBL Advanced Training Centre kicked off with the EMBL Conference: Expanding the Druggable Proteome with Chemical Biology (5 – 7 February 2020). Meet the three poster prize winners from the conference – Patrick Zanon, Enric Ros and Rens de Vries.

Identification of novel antibiotic targets using covalent inhibitors and residue-specific proteomics

PHOTO: Patrick Zanon

Authors: Patrick Zanon (1), Stephan Hacker (1)

Bacterial resistance towards all marketed antibiotics poses an imminent threat to global health. In order to overcome this antibiotic crisis, drugs with novel mechanisms-of-action are desperately needed. Covalent inhibitors are especially promising in this regard as they are already prevalent as antibiotics (e.g. β-lactams and fosfomycin), allow targeting protein pockets that are hard to address with non-covalent interactions alone and hold the promise to overcome some mechanisms of resistance development.[1] Furthermore, covalent inhibitors are uniquely suited to identify new binding pockets on proteins using residue-specific proteomics and in this way to broaden the scope of targetable protein targets.
The vast majority of covalent inhibitors so far either hijack the enzymatic activity of the protein by modification of catalytic serines and tyrosines or address cysteines through their inherent outstanding nucleophilicity. Nevertheless, the number of potentially addressable proteins in the bacterial proteome is significantly limited by the requirement for these amino acids to be present in target proteins. By developing electrophilic groups that are selective for other amino acids (e.g. lysine), we strive to expand the number of exploitable interaction sites for covalent inhibitors in the bacterial proteome. Furthermore, to assess the reactivity and selectivity of covalent inhibitors and to streamline the discovery of novel antibiotic targets, we develop new methods for residue-specific activity-based protein profiling.[2,3] In this way, we are convinced, that we will be able to make important contributions to overcome the antibiotic crisis.

[1] R. A. Bauer, Drug Discov. Today 2015, 20, 1061–1073.
[2] K. M. Backus et al., Nature 2016, 534, 570.
[3] P. R. A. Zanon, L. Lewald, S. M. Hacker Angew. Chem. Int. Ed., doi: 10.1002/anie.201912075.

View PDF poster

(1) Technical University of Munich, Germany

Incorporating 1,2,4,5-tetrazines into proteins: A method for targeted drug release

PHOTO: Enric Ros

Authors: Enric Ros (1), Antoni Riera (1), Lluís Ribas de Pouplana (1)

Bioorthogonal reactions, namely reactions that can take place under biocompatible conditions, are having a major impact in the development of new research tools and novel therapeutic strategies. In the latter case, the discovery of the reaction commonly referred to as “click-to-release” (CtR), which triggers the liberation of a given cargo (normally a drug or a fluorophore), has led to several applications in drug delivery. This reaction happens between a 1,2,4,5-Tetrazine (Tz) fragment and certain alkenes or alkynes and, in order to achieve drug delivery specifically at the site of action, one of the two reactant counterparts should be conjugated to a biomolecule acting as a carrier, ideally a protein.
We have synthetized the previously unreported 3-bromo-1,2,4,5-tetrazine and used its excellent reactivity to attain chemoselective protein labelling onto lysines. Due to the chemical features of the formed amino-Tz. The resulting labelled lysines can undergo fast CtR reactions with trans-cyclooctenes, thereby releasing a desired cargo under physiological conditions. To showcase the applicability of this approach, we have labelled the monoclonal antibody Trastuzumab (anti-Her2) and demonstrated the specific release of the cytotoxic drug doxorubicin upon reaction in a mammalian cell culture context, resulting in a decrease in cell viability.
Additionally, we have also used 3-bromo-1,2,4,5-tetrazine to synthetize an amino-Tz containing non-natural amino acid and used it to achieve protein labelling through its genetic incorporation by amber codon suppression in Escherichia coli. The resulting site-selectively labelled proteins can also trigger fast, high yielding CtR reactions.
To summarize, we have successfully applied a new compound, 3-bromo-1,2,4,5-tetrazine, as a reagent to achieve either chemoselective or site selective protein labelling. We have applied the bioconjugated proteins to demonstrate their potential use for targeted drug delivery in a relevant cellular model, opening new therapeutically useful methodologies.

View PDF poster

(1) IRB Barcelona, Spain

Modulation of nuclear receptors through ligand architecture

PHOTO: Rens de Vries

Authors: Rens de Vries (1), Femke Meijer (1), Luc Brunsveld (1)

Nuclear receptors (NRs) have been one of the primary drug targets over the last decades for their ability to regulate gene expression. The traditional approach of modulating NRs is to design small synthetic molecules that interact with the ligand-binding domain (LBD) of the NR. Ligands can thereby either enhance or inhibit gene transcription. Apart from the effects on transcription, recent research shows that minor changes in the ligand scaffold can have a significant impact on the behavior of the NR. In this research, we show how small-molecules can change both the dimerization behavior of NRs and the recruitment of allosteric modulators.
The Retinoic X Receptor α (RXRα) is known as a master regulator among NRs through its ability to heterodimerize with, and thereby modulate, other NRs. We show, using a novel NanoBIT complexation assay, that small directed changes in the RXR ligand scaffold can lead to selective formation of specific hetero- and homodimers. Using our structural data and focused compound library, a model was developed to help to understand this effect of the ligand. This information can serve as a blueprint to design small-molecules that selectively target specific NRs via RXR. This makes RXR as an exciting and versatile target for NR modulation, especially when classical modulation of the partner NR is not possible.
Recently, small-molecules have been found to bind to allosteric sites of NRs. Allosteric ligands are of interest since they do not compete with the endogenous ligand of the NR and often shown an increased selectivity towards their target. We show, using X-ray crystallography and biochemical assays, that there is communication between orthosteric and allosteric ligands in the RAR-related orphan receptor γ t (RORγt). We successfully solved eleven new ternary crystal structures of RORγt in the presence of both orthosteric and allosteric ligands. These structures mechanistically show how binding of the orthosteric ligand leads to positive cooperative binding of the allosteric ligand.

View PDF Poster

(1) Eindhoven University of Technology, The Netherlands

Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by.

Follow us:

Best Poster Awards – Target Validation Using Genomics and Informatics

Meet Giovanni Spirito and Borja Gomez Ramos – the two poster prize winners at the recent EMBL – Wellcome Genome Campus Conference: Target Validation Using Genomics and Informatics (8 – 10 Dec 2019).

Identification and prioritization of candidate causal genomic variations from individuals affected by ASD

PHOTO: Giovanni Spirito

Authors: Giovanni Spirito (1), Diego Vozzi (2), Martina Servetti (3), Margherita Lerone (3), Maria Teresa Divizia (3), Giulia Rosti (3), Livia Pisciotta (4), Lino Nobili (4), Irene Serio (4), Stefano Gustincich (2), Remo Sanges (1)

Next generation sequencing (NGS) technologies enabled the extensive study of the genomics underlying human diseases. Namely whole exome sequencing (WES) represents a cost-efficient method which can lead to the detection of multiple classes of genomic variants and the discovery of novel disease-associated genes. One of the drawbacks of this approach however, is the large number of genomic variants detected in each analysis. Automated variant prioritization strategies are therefore required. This is particularly important in the case of complex disease such as ASD, whose genetic etiology is still poorly understood. To this aim we built a custom computational framework capable, from raw WES data, to automatically detect four classes of genomic variants (SNPs, indels, copy number variants and short tandem repeat variants) and prioritize them in regards to their relevance to a specific phenotype. We tested this framework on a selection of 29 trios including probands affected by severe and undiagnosed rare phenotypes and a small cohort of 10 trios all featuring healthy parents and one offspring affected by autism spectrum disorder (ASD). We were able to successfully detect rare and de novo high penetrance variants which have been validated and confirmed as causative among the undiagnosed probands. In the specific case of the ASD cohort we could highlight several genes which are not implicated in autism susceptibility, but nevertheless whose connections to genes relevant for ASD could suggest a possible involvement in the phenotype. Furthermore, our approach enabled us to detect several instances characterized by the presence of multiple candidate variants within genes belonging to the same canonical pathway in one proband. Our workflow allows to detect and prioritize multiple classes of genomic variants in order to both highlight rare high penetrance disease-causative mutation, and possibly reconstruct the genomics at the basis of complex ASD phenotypes.

View PDF Poster

(1) SISSA, Italy, (2) IIT, Italy, (3) Gaslini Institute, Italy, (4) University of Genova, Italy

Omics data integration for the identification of cell-type-specific gene regulatory networks and regulatory variants in Parkinson’s disease

PHOTO: Borja Gomez Ramos

Authors: Borja Gomez Ramos (1,2), Jochen Ohnmacht (1,2), Nikola de Lange (2), Aurélien Ginolhac (1), Aleksandar Rakovic (5), Christine Klein (5), Roland Krause (2) , Marcel H. Schulz (6), Thomas Sauter (1), Rejko Krüger (2,3,4) and Lasse Sinkkonen (1)

Genome-Wide Association Studies (GWAS) have identified many variants associated with different diseases. However, it is still a challenge to make sense of this data as the majority of genetic variants are located in non-coding regions, complicating the understanding of their functionality. In the last few years, it has been found that non-coding genetic variants concentrate in regulatory regions in the genome, which are cell type and cell-stage specific. In this project, we seek to identify functional Parkinson’s disease GWAS non-coding genetic variants that could make carriers more prone to developing PD. To do so, we are using induced pluripotent stem cell (iPSC) technology to differentiate somatic cells into midbrain dopaminergic (mDA) neurons, astrocytes and microglia. Assessing their chromatin accessibility, active chromatin regions and transcriptome, we can identify crucial regulatory regions in the genome, key transcription factors and derive the gene regulatory networks for the three different cell types. Then, we will map the non-coding genetic variants to the different regulatory regions and predict their effect in silico for the subsequent validation in vitro. This innovative approach will also identify novel factors controlling cell fate and cell identity.

View PDF Poster

(1) Life Sciences Research Unit, University of Luxembourg, Luxembourg, (2) Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, (3) Centre Hospitalier de Luxembourg (CHL), Luxembourg, (4) Luxembourg Institute of Health (LIH), Luxembourg, (5) Institute of Neurogenetics, University of Lübeck, Germany, (6) Institute for Cardiovascular Regeneration, Uniklinikum and Goethe University Frankfurt, Germany

Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by.

Follow us:

Best Poster Awards – Metabolism Meets Epigenetics

In its first edition, the EMBO|EMBL Symposium: Metabolism Meets Epigenetics brought together 289 world-leading researchers who examined how metabolites and metabolic networks impact gene regulation, what their roles are in disease and how this opens novel therapeutic avenues.

In addition to the 21 invited speakers and 22 selected short talks, 142 posters were presented during the two poster sessions. Today we present three of the five award-winning posters decided by popular vote.

Citrate carrier links intermediate metabolism to histone acetylation upon ageing of mouse mesenchymal stem cells (MSCs)

PHOTO: Andromachi Pouikli

Authors: Andromachi Pouikli (1), Monika Maleszewska (2), Swati Parekh (1), Chrysa Nikopoulou (1), Maarouf Baghdadi (1), Linda Partridge (1), Peter Tessarz (1)

Chromatin and metabolism interact in a reciprocal manner; on one hand metabolism-related genes are subjected to epigenetic modifications, which regulate gene expression. On the other hand, intracellular metabolism provides metabolites which can serve as essential co-factors and substrates for chromatin-modifying enzymes, affecting their activity. Although, it is well established that the process of ageing is accompanied by changes in metabolism and by chromatin alterations, their interplay in this context remains still poorly understood. In this study we sought to determine how ageing impinges on the relationship between cellular metabolism and the epigenome, using mouse mesenchymal stem cells from the bone marrow (BM-MSCs). In brief, our data suggest that there is a strong and direct link between the metabolic and the epigenetic states of the cell, with ageing-driven changes in metabolism regulating gene transcription and BM-MSC’s stemness, via alterations of the chromatin structure. We conclude that physiological ageing elicits changes in metabolism, resulting in suppressed glycolysis and impaired lipid biogenesis. Moreover, we demonstrate that during ageing there are lower levels of histone acetylation, despite the higher acetyl-CoA levels. We provide a solid explanation for this apparent discrepancy, pointing to the impaired export of acetyl-CoA from mitochondria to the cytosol. Indeed, the protein levels of the citrate carrier Slc25a1 decrease dramatically upon ageing. Using inhibition and supplementation experiments we provide a causal relationship between Slc25a1 function and the levels of histone acetylation, which directly influence chromatin accessibility and plasticity. Collectively, our data establish a tight, age-dependent connection between metabolism, epigenome and stemness and identify citrate carrier as the responsible protein for the mitochondrial-nuclear communication.

View PDF Poster

(1) Max Planck Institute for Biology of Ageing, Germany, (2) Personalis Inc, Germany

Epigenetics meets metabolism through histone acetyltransferase NAA40

PHOTO: Christina Demetriadou

Authors: Christina Demetriadou (1), Anastasia Raoukka (1), Agathi Elpidoforou  (1), Constantine Mylonas (2), Swati Parekh (2), Peter Tessarz (2), Antonis Kirmizis (1)

N-alpha-acetyltransferase 40 (NAA40) is distinct among other histone acetyltransferases (HATs) because it deposits an acetyl moiety on the alpha-amino group at the very N-terminal tip of histones H4 and H2A, instead on the lysine side chain. The biological function of this evolutionarily conserved enzyme remained unexplored for several decades because it was thought to mediate an inert modification. However, we previously showed that NAA40-mediated N-terminal acetylation of histone H4 (N-acH4) crosstalks with an adjacent arginine methylation mark to regulate yeast cellular aging in response to caloric restriction through transcriptional control of several metabolic genes. Therefore, we are currently interested in deciphering the function of human NAA40 in carcinogenesis. We recently showed that NAA40 is frequently upregulated in primary human colorectal cancer (CRC) samples. Remarkably, depletion of NAA40 and its accompanied reduction in N-acH4 blocked colon cancer cell proliferation and reduced cell survival in vitro and in xenograft models. We also found that loss of NAA40 expression or of its HAT activity markedly induce global histone methylation. Additionally, whole transcriptome analysis showed that NAA40 knockdown leads to upregulation of key enzymes involved in one-carbon metabolism. Intriguingly, silencing of methylenetetrahydrofolate reductase (MTHFR), which links the folate to methionine cycle, rescues the induction of global histone methylation and loss of cell viability triggered by NAA40 depletion. Hence, this recent work implies that NAA40 may transcriptionally regulate vital metabolic enzymes to control the flux of carbon units into the methionine cycle influencing S-adenosylmethionine (SAM) levels and triggering epigenome reprogramming of cancer cells. Overall, our findings thus far propose that NAA40 and its associated N-acH4 are crucial epigenetic modulators in tumourigenesis and implicate these factors in rewiring cancer cell metabolism.

Poster currently not available.

(1) University of Cyprus, Cyprus
(2) Max Planck Institute for Biology of Ageing, Germany

Role of MOF acetyl transferase in mitochondrial homeostasis

PHOTO: Sukanya Guhathakurta

Authors: Sukanya Guhathakurta (1), Christoph Martensson (2), Alexander Schendzielorz (3), Bettina Warsheid (3), Thomas Becker (2), Asifa Akhtar (1)

Mitochondria lies at the centre of cellular and organismal energy homeostasis, housing a large repertoire of enzymes that are required for the synergy of various metabolic pathways. Mitochondrial gene expression and protein acetylation are two important fundamental processes situated at the crossroad between mitochondrial function and metabolic status of a cell. Gene transcription in the mitochondria has been studied over several decades, but enzymatic acetylation of mitochondria proteins has stayed so far enigmatic. MOF acetyl transferase and its KANSL complex members dually localize to the nucleus and the mitochondria in mouse and human cells. The MOF-KANSL complex regulates metabolic gene transcription in the nucleus and expression of Electron Transport Chain (mtETC) components from the mtDNA, in a cell type dependent fashion. Regulation of nuclear gene transcription by MOF is well understood, however, its control of mitochondrial function remains elusive. Here, we report that loss of MOF leads to severe mitochondrial dysfunction in Mouse Embryonic Fibroblasts (MEFs), sprouting from a stalled oxidative phosphorylation. We address the mechanisms by which the enzyme maintains mitochondrial function in these cells by using a multi-omics approach. We discovered that the role of MOF-KANSL complex in the mitochondria of aerobically respiring cells could be decoupled from its regulation of steady state RNA levels, and could further be attributed to the acetylation of mitochondrial proteins. We characterize the role of acetylation on these proteins through generation of acetylated and non-acetylated mimics. Collectively our data, along with previously published works, suggests that MOF has emerged as a moderator to strike a harmony in the context of communication between the nucleus and the mitochondria. Recent progress on the project will be discussed.

(1) Max Planck Institute for Immunobiology and Epigenetics, Germany
(2) Institute of Biochemistry and Molecular Biology, Germany
(3) Institute for Biology II, Germany

View PDF Poster

Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by .

Follow us:

Best Poster Awards – Precision Health

140 researchers came together recently at the EMBL Advanced Training Centre in Heidelberg, Germany, for the EMBO Workshop: Precision Health: Molecular Basis, Technology and Digital Health (13 – 16 November 2019) to present and discuss the promises and challenges of precision health and the molecular insights necessary to enable a maintenance of wellness and prevention of disease.

Out of the posters presented, 4 were awarded a poster prize based on popular vote. Here we present the poster abstracts of four of the winners.

A computational modelling approach to characterizing postprandial glucose responses in individuals
Balazs Erdos from TiFN Wageningen and MaCSBio, Maastricht University, The Netherlands, PHOTO: Balazs Erdos

Balazs Erdos (1), (2)*, Bart van Sloun (1), (2), Shauna O’Donovan (2), Michiel Adriaens (2), Natal van Riel (3), Ellen Blaak (4), Ilja Arts (2)

The large variability in the dynamic properties of the postprandial glucose response curves in individuals suggest that it is not sufficient to use average values or single time point measures of postprandial glycemia in order to characterize individuals’ glycemic control. Instead, approaches that are capable of capturing the dynamic events are necessary. In this study, we develop personalized computational models based on ordinary differential equations, to describe the glucose and insulin dynamics of individuals in response to an oral glucose tolerance test. We observed that these personalized models are capable of capturing a wide range of glucose and insulin dynamics including normal, prediabetic and type 2 diabetic responses as well as responses from intermediate states.

View PDF poster

(1) TiFN, Wageningen, The Netherlands, (2) Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands, (3) Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands, (4) Dept. of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands

*E-mail: balazs.erdos@maastrichtuniversity.nl

Predict nephrotoxicity associated with cisplatin-based chemotherapy in testicular cancer patients

Sara Garcia (1), Jakob Lauritsen (2), Zeyu Zhang (3), Mikkel Bandak (2), Marlene Danner Dalgaard (1), Rikke Linnemann Nielsen (1), Gedske Daugaard (2), Ramneek Gupta (1)

In industrialized countries, testicular cancer (TC) is the most common solid tumor in men between 20 and 40 years old and besides being one of the most treatable types of cancer, the long-term side-effects of chemotherapy are worrisome, since they are largely irreversible. Their severity is normally related to the total amount of chemotherapy received, which makes that an important factor to a successful treatment. The standard treatment for TC is 3 cycles of cisplatin, etoposide and bleomycin (BEP), being that the number of cycles can vary between 4-5 or more if the prognosis of the patient is intermediate or poor. Some of the late side-effects include nephrotoxicity, which can be measured by the drop in glomerular filtration rate after the patient follows chemotherapy. Materials and Methods: Integrative machine learning models were built using a dataset of 400 Danish individuals in order to identify clinical and/or genomics features and classify patients at higher risk of developing nephrotoxicity given a treatment of BEP-cycles. Results: First, only clinical features, such as age at the time of treatment, dose of cisplatin, patient’s prognosis, and number of cycles, were considered, and relevant features were selected to use in the classifier (AUC 0.66, SD 0.02). The classifier was then optimized by adding genomics markers, which helped improving the prediction (AUC 0.75, SD 0.02). Conclusions: Therefore, it is proposed a machine learning algorithm which, by helping predicting nephrotoxicity in advance, can benefit to improve chemotherapy efficacy in TC patients. These data driven models can also be applicable to other cancers, such as ovarian, bladder, and lung cancer where more elderly patients are at risk of nephrotoxicity and identification upfront will have direct clinical implications.

Poster currently not available

(1) Technical University of Denmark, Denmark, (2) Copenhagen University Hospital, Denmark, (3) University of Chinese Academy of Sciences, China

Loss of N-glycanase 1 alters transcriptional and translational regulation
Petra Jakob from EMBL Heidelberg, Germany, PHOTO: Petra Jakob

Petra Jakob (1), William Mueller (1), Sandra Clauder-Münster (1), Han Sun (2), Sonja Ghidelli-Disse (3), Diana Ordonez (1), Markus Boesche (3), Markus Bantscheff (3), Paul Collier (1), Bettina Haase (1), Vladimir Benes (1), Malte Paulsen (1), Peter Sehr (1), Joe Lewis (1), Gerard Drewes (3), Lars Steinmetz (1)

N-Glycanase 1 (NGLY1) deficiency is an ultra-rare, complex and devastating neuromuscular disease. Patients display multi-organ symptoms including developmental delays, movement disorders, seizures, constipation and lack of tear production. NGLY1 is a deglycosylating protein involved in the degradation of misfolded proteins retrotranslocated from the endoplasmic reticulum (ER). NGLY1-deficient cells have been reported to exhibit decreased deglycosylation activity and an increased sensitivity to proteasome inhibitors. We show that the loss of NGLY1 causes substantial changes in the RNA and protein landscape of K562 cells and results in downregulation of proteasomal subunits, consistent with its processing of the transcription factor NFE2L1. We employed the CMap database to predict compounds that can modulate NGLY1 activity. Utilizing our robust K562 screening system, we demonstrate that the compound NVP-BEZ235 (Dactosilib) promotes degradation of NGLY1-dependent substrates, concurrent with increased autophagic flux, suggesting that stimulating autophagy may assist in clearing aberrant substrates during NGLY1 deficiency.

View PDF poster

(1) EMBL Heidelberg, Germany, (2) Stanford University, United States of America, (3) Cellzome, Germany

Data integration for prediction of weight loss in clinically controlled dietary trials

Rikke Linnemann Nielsen (1), Marianne Helenius (1), Sara Garcia (1), Henrik Munch Roager (2), Derya Aytan (3), Lea Benedicte Skov Hansen (1), Mads Vendelbo Lind (2), Josef Vogt (1), Marlene Danner Dalgaard (1), Martin I Bahl (3), Cecilia Bang Jensen (1), Rasa Muktupavela (1), Christina Warinner (4), Vincent Appel (5), Rikke Gøbel (5), Mette B Kristensen (2), Hanne Frøkjær (6), Morten H Sparholt (7), Anders F Christensen (7), Henrik Vestergaard (5), Torben Hansen (5), Karsten Kristiansen (6), Susanne Brix Pedersen (1), Thomas Nordahl Petersen (3), Lotte Lauritzen (2), Tine Rask Licht (3), Oluf Pedersen (5), Ramneek Gupta (1)

Diet is a key strategy in weight loss management. Advances in omics technologies research allow analyses of determinants of clinical interventions outcomes. We have previously reported diet-induced weight loss in non-diabetic middle-aged Danes in two clinically controlled dietary trials where the content of whole grain or gluten was changed. However, it remains elusive how predictable weight loss is at the individual level. We here classify weight loss responders and non-responders from the whole grain and gluten trials by integrating multi-omics data (host genetics, gut microbiome, urine metabolome) together with physiology and anthropometrics into random forest models. The most predictive models for weight loss included features of diet, gut microbial species and urine metabolites (ROC-AUC:0.84-0.88, model only with diet type ROC-AUC:0.62). Furthermore, we demonstrate that a model ensemble is robust to missing information of microbiome and metabolome profiles given features of physiology (including postprandial response), host genetics and transit-time (ROC-AUC:0.72).

Poster currently not available

(1) Technical University of Denmark, Denmark, (2) University of Copenhagen, National Food Institute, Technical University of Denmark, Denmark, (3) National Food Institute, Technical University of Denmark, Denmark, (4) Harvard University, United States of America, (5) The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark, (6) University of Copenhagen, Denmark, (7) Bispebjerg University Hospital, Denmark

Working on your own conference poster? Then check out 10 tips to create a scientific poster people want to stop by .

Follow us: