De Novo Selection of Peptides That Confer Antibiotic Resistance

Michael Knopp and Dan I. Andersson
Department of Medical Biochemistry and Microbiology
Uppsala University, Sweden

Question
How can new genes originate de novo (from random DNA sequences)?

Vertical gene transfer
- Transformation
- Transcription
- Translation

Horizontal gene transfer
- Gene duplication
- Recombination
- Horizontal gene transfer
- Translocation

Conclusion
- Random sequences can encode functional peptides at a frequency that can be experimentally assessed
- These peptides confer resistance levels similar to chromosomal mutations
- The resistance mechanisms rely on pre-existing cellular functions
- The isolated peptides are highly hydrophobic and are predicted to interact with the membrane

Library construction
Transformed in E. coli expressing relevant receptor
Selection
- Mixed culture of E. coli and expressing receptor pellet

Characterization
- Antibiotic resistance
 - Rescue of auxotrophs
 - Rescue of thermosensitivities
 - Utilization of novel carbon sources
 - Interaction with RNA regulation

Aminoglycoside Resistance Results Colistin Resistance

Sequence analysis
- All three identified peptides (Ayr-1, Ayr-2, Ayr-3) are short, highly hydrophobic and predicted to be transmembrane helices

Site-directed mutagenesis
- Chang to charged amino acids (K/S), or proline (P) cause a complete loss of function in most cases

In vivo membrane depolarization
- Ayr1 causes in vivo depolarization of membrane vesicles (collaboration with Prof. Pål Assholt, Stockholm University)

Cross-resistance
- Ayr1-3 confer resistance to all tested aminoglycosides, but no other antibiotics

Additivity with chromosomal mutants
- Ayr1 shows additivity with target alteration mutants, but not with membrane-potential detecting mutants

In vivo membrane depolarization
- Ayr1 causes an increased uptake of the membrane-potential sensitive probe DIOC(5). In vivo

Colistin resistance
- Colistin is a last-resort antibiotic for treatment of multidrug-resistant Pseudomonas, Klebsiella and Acinetobacter species
- Resistant mutants typically show an overactivation of the PomAB two-component system resulting in LipA modifications
- Only one partial/mild resistance gene has been described (per), an enzyme that also causes LipA modifications

Experimental Set-Up

COLLABORATORS:
- Fredrika Rajer
- Jonina Gudmundsdottir
- Omer Warsi
- Stephen M. Trend
- Martin V. Doiglass
- Tobias Nilsson

CONTACT:
- Mail: Michael.Knopp@imbim.uu.se

REFERENCE: