Characterizing postprandial glucose responses in individuals using a computational modelling approach

Balazs Erdos1,2,*, Bart van Sloun1,2, Shauna O’Donovan2, Michiel Adriaens5, Natal van Riel2,3, Ellen Blaak4, Ilja Arts2
1TIFN, Wageningen, The Netherlands
2Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
3Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
4Dept. of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
*balazs.erdos@maastrichtuniversity.nl

INTRODUCTION
The evolution from healthy glucose control towards prediabetes and type 2 diabetes occurs continuously over years, characterized by deteriorations in the glycemic glucose and insulin concentrations [1]. However, the large heterogeneity in the pathophysiology of type 2 diabetes and individual’s glycemic control make it difficult to categorize participants into prevention target groups and necessitates the mechanistic characterization of the glucose and insulin dynamics on a personalized level. Ordinary differential equation (ODE) based mathematical models have been developed to describe the plasma glucose response in humans to a single dose of glucose [2,3]. These models are mathematical abstractions of the real biological system and they provide quantitative information on the interactions, dynamics and regulation of specific components of the system. Quantifying the response using a modelling approach facilitates the mechanistic understanding of the underlying physiology as well as the development of decision support systems for preventing diabetes.

We aim to characterize an individual’s glucose response to an oral glucose tolerance test (OGTT) using a personalized ODE model that describes glucose and insulin dynamics in the postprandial state [4].

APPROACH
Data from the Diogenes [5] dietary intervention study, including a 5 time point OGTT was used in modeling the glucose response. In order to estimate participant’s glucose and insulin dynamics we fit an ODE based mechanistic model describing glucose and insulin dynamics on the OGTT challenge test data. The model was adapted from [4] to allow personalization by selecting a subset of the parameters to be estimated. The candidate models were then carefully pursued for best fitting model while also maintaining certain level of uncertainty and identifiability in its parameter values. Finally, parameters of the model were estimated on individual’s data. The model was implemented in MATLAB 2018b.

RESULTS & DISCUSSION
The screening of candidate models resulted in a model containing four sensitive and identifiable parameters. The model was successfully individualized by fitting it to subject specific time series data. The resulting personalized models were capable of capturing a wide range of glucose and insulin dynamics including normal, prediabetic and type 2 diabetic responders. The participant’s responses can be characterized by their place in the parameter space. This approach also allows observation of the continuous trajectory between healthy and prediabetic or diabetic, contributing to the mechanistic understanding of changing between states.

• The personalized models may assist in the understanding of the differences between metabolic states and the trajectories between them

• Figures: Personalized models in the reduced parameter space, colored by classification of diagnosis by the American Diabetes Association criteria (left), examples of personalized model simulations (right)

• A model with 4 parameters was selected for parameter estimation after screening of candidate models

• The personalized models were capable of describing a wide range of responses including healthy, prediabetic and type 2 diabetic but also responses of intermediate states as well

REFERENCES

In the face of today’s challenge to make the healthy choice the easy choice, it is vital for the food industry and research organizations to pool knowledge and resources for multidisciplinary research. TIFN is a unique public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in development of innovative products and technologies that respond to consumer demands for safe, tasty and healthy foods.